Meeting: 1001, Evanston, Illinois, SS 8A, Special Session on Computability Theory and Applications

1001-03-98 **Stephen G. Simpson*** (simpson@math.psu.edu), Department of Mathematics, Pennsylvania State University, State College, PA 16802. *Mass Problems to the Rescue!*

Two unsolved problems concerning the semilattice \mathcal{R}_T of r. e. Turing degrees are: (1) To find a specific, natural example of an r. e. degree other than 0' and 0. (2) To find a "smallness property" of an infinite co-r. e. set which ensures that its degree is < 0'. We now widen the context to obtain satisfactory solutions to both problems. Consider the lattice \mathcal{P}_w of weak degrees of mass problems associated with nonempty Π_1^0 subsets of 2^ω . There is a natural embedding of \mathcal{R}_T into \mathcal{P}_w carrying 0' and 0 to the top and bottom degrees in \mathcal{P}_w respectively. We identify \mathcal{R}_T with its image under this embedding. Regarding (1), there are many natural degrees in \mathcal{P}_w related to foundationally interesting topics such as reverse mathematics, algorithmic randomness, subrecursive hierarchies, and computational complexity. Unfortunately, these natural degrees in \mathcal{P}_w are incomparable with all of the r. e. degrees, except 0' and 0. Regarding (2), there are smallness properties of nonempty Π_1^0 sets $P \subseteq 2^\omega$ analogous to hypersimplicity etc. which imply that the weak degree of P is < 0'. (Some of this work is joint with Stephen Binns.) (Received August 16, 2004)