Meeting: 1001, Evanston, Illinois, SS 13A, Special Session on Algebraic Topology: Interactions with Representation Theory and Algebraic Geometry

1001-55-171 Daniel C Isaksen* (isaksen@math.wayne. edu), Department of Mathematics, Wayne State University, Detroit, MI 48202, and Daniel Dugger. Algebraic K-theory and sums-of-squares formulas.
A sums-of-squares formula over a field F is a polynomial identity of the form

$$
\left(x_{1}^{2}+\cdots+x_{r}^{2}\right)\left(y_{1}^{2}+\cdots+y_{s}^{2}\right)=z_{1}^{2}+\cdots+z_{n}^{2},
$$

where each z_{i} is bilinear in the x 's and y 's over F. A classical theorem uses topological K-theory to prove that if such a formula exists over \mathbb{R}, then certain powers of 2 must divide certain binomial coefficients. While it has been known that this result works over all characteristic 0 fields, the characteristic p case has remained open. We prove the result for all fields, using algebraic K-theory in place of topological K-theory. (Received August 24, 2004)

