Meeting: 1004, Bowling Green, Kentucky, SS 2A, Special Session on Graph Theory

1004-05-148Nawarat Ananchuen (nawarat@su.ac.th), Department of Mathematics, Silpakorn University,
73000 Nakorn Pathom, Thailand, and Michael D Plummer*
(michael.d.plummer@vanderbilt.edu), Department of Mathematics, Vanderbilt University,
Nashville, TN 37240. Connectivity and matching in 3-vertex-critical claw-free graphs.

The cardinality of any smallest dominating set in a graph G is called the *domination number* of G and denoted by $\gamma(G)$. Graph G is said to be 3-vertex-critical if $\gamma(G) = 3$, but $\gamma(G - v) = 2$, for every vertex v in G. For $|V(G)| \equiv k \pmod{2}$, graph G is said to be k-factor-critical if G - S contains a perfect matching for every $S \subseteq V(G)$ with |S| = k.

In this paper several new results about connectivity and k-factor-criticality are presented for 3-vertex-critical graphs which are also claw-free. (Received January 23, 2005)