Meeting: 1004, Bowling Green, Kentucky, SS 11A, Special Session on Commutative Ring Theory

1004-13-187 K. Alan Loper* (lopera@math.ohio-state.edu), 1179 University Drive, Newark, OH 43055.
The prime spectrum of a ring of integer-valued rational functions. Preliminary report.
When V is a DVR with finite residue field, it is well known that the prime ideals of the ring $\operatorname{Int}(\mathrm{V})$ of integer-valued polynomials on V which lie over the maximal ideal of V are naturally indexed by the elements of the M -adic completion of V (where M is the maximal ideal of V). If V is a rank-one valuation domain which is not discrete or which has infinite residue field then $\operatorname{Int}(\mathrm{V})=\mathrm{V}[\mathrm{x}]$. The situation with the $\operatorname{ring} \operatorname{IntR}(\mathrm{V})$ of integer-valued rational functions on V is somewhat different. If V is a valuation domain it is known that $\operatorname{IntR}(\mathrm{V})$ is a Prufer domain whenever the residue field of V is not algebraically closed. Except for the special case where V is a DVR with finite residue field there is very little know about the prime spectrum of $\operatorname{IntR}(\mathrm{V})$ however. In this talk we classify the prime ideals for many domains $\operatorname{IntR}(\mathrm{V})$ other than this special case. (Received January 24, 2005)

