Meeting: 1004, Bowling Green, Kentucky, SS 11A, Special Session on Commutative Ring Theory

1004-13-72 Andrea M. Frazier* (frazier@math.uiowa.edu), Department of Mathematics, University of Iowa, 14 MacLean Hall, Iowa City, IA 52242, and D. D. Anderson. A general theory of factorization, I. Preliminary report.

Let D be an integral domain with unit group U(D) and $D^{\sharp} = D \setminus (U(D) \cup \{0\})$; let τ be a relation on D^{\sharp} . For $a \in D^{\sharp}$, we define a factorization $a = \lambda a_1 \cdots a_n$ to be a τ -factorization of a if $\lambda \in U(D)$, $a_i \in D^{\sharp}$, and $a_i \tau a_j$ for $i \neq j$. Then $a \in D^{\sharp}$ is a τ -atom if $a = \lambda(\lambda^{-1}a)$ is the only τ -factorization of a, and we define D to be τ -atomic if each element has a τ -factorization into τ -atoms. Analogously, we will define properties such as τ -prime, $|_{\tau}$ -prime (read 'divides- τ prime'), τ -ACCP, τ -UFD, etc. We discuss these definitions, some examples, and elementary theorems. (Received January 17, 2005)