Meeting: 1004, Bowling Green, Kentucky, SS 6A, Special Session on Representation Theory

1004-20-48 Chal Benson* (bensonf@mail.ecu.edu), Departmant of Mathematics, East Carolina University, Greenville, NC 27858, and R. Michael Howe and Gail Ratcliff. Some invariant polynomials of a matrix argument. Preliminary report.
This work concerns linear multiplicity free actions of the complex groups $G_{\mathbb{C}}=G L(n, \mathbb{C}), G L(n, \mathbb{C}) \times G L(n, \mathbb{C})$ and $G L(2 n, \mathbb{C})$ on the vector spaces $V=\operatorname{Sym}(n, \mathbb{C}), M_{n}(\mathbb{C})$ and $\operatorname{Skew}(2 n, \mathbb{C})$. We relate the canonical invariants in $\mathbb{C}\left[V \oplus V^{*}\right]$ to spherical functions for Riemannian symmetric pairs (G, K) where $G=G L(n, \mathbb{R}), G L(n, \mathbb{C})$ or $G L(n, \mathbb{H})$ respectively. These in turn can be expressed using three families of classical zonal polynomials. We use this fact to derive a combinatorial algorithm for the generalized binomial coefficients in each case. Many of these results were obtained previously by Knop and Sahi using different methods. (Received January 11, 2005)

