Meeting: 1004, Bowling Green, Kentucky, SS 13A, Special Session on Nonlinear Analysis and Applied Mathematics

1004-46-202Almut Burchard* (burchard@virginia.edu), Department of Mathematics, Kerchof Hall,
Cabell Drive, Charlottesville, VA 22903, and Yan Guo, Division of Applied Mathematics, Box F,
Providence, RI 02912. Compactness via Symmetrization.

We consider two types of translation-invariant functionals on \mathbb{R}^n which are known to satisfy sharp rearrangement inequalities. The functional \mathcal{I} is a convolution integral such as the Coulomb energy, and \mathcal{J} is a convex gradient functional such as the $W^{1,p}$ -norm. Given a sequence of functions f_j whose symmetric decreasing rearrangements f_j^* converge to some limiting function g. We show that the functions f_j themselves converge to g up to translations, provided that either $\mathcal{I}(f_j) \to \mathcal{I}(g)$ or $\mathcal{J}(f_j) \to \mathcal{J}(g)$. These compactness results lead to applications in variational problems and stability problems in stellar dynamics. (Received January 24, 2005)