Meeting: 1004, Bowling Green, Kentucky, SS 13A, Special Session on Nonlinear Analysis and Applied Mathematics

1004-49-99 Qinglan Xia* (qlxia@math.utexas.edu), University of Texas at Austin, Department of Mathematics, Austin, TX 78712. A variational problem on the formation of mud cracking.

In this talk, I will present a variational model targeting at the formation of mud cracking. We study the boundary of sets minimizing a quasi perimeter $T(E) = P(E, \Omega) + G(E)$ with a volume constraint. Here Ω is any open subset of \mathbb{R}^n with $n \geq 2$, G is a lower semicontinuous function on sets of finite perimeter satisfies a condition that $G(E) \leq G(F) + C |E\Delta F|^{\beta}$ among all sets of finite perimeter with equal volume. We show that under the condition $\beta > 1 - \frac{1}{n}$, any volume constrained minimizer E of the quasi perimeter T has both interior points and exterior points, and E is indeed a quasi minimizer of perimeter without the volume constraint. Using a well known regularity result about quasi minimizers of perimeter, we get the classical $C^{1,\alpha}$ regularity for the reduced boundary of E. (Received January 19, 2005)