Meeting: 1004, Bowling Green, Kentucky, SS 4A, Special Session on Knot Theory and Its Applications

1004-57-234 Yuanan Diao* (ydiao@uncc.edu), Department of Mathematics and Statistics, UNC Charlotte, Charlotte, NC 28223, and Claus Ernst and Uta Ziegler. The ropelength of closed braids. Preliminary report.
For a knot or link K, let $L(K)$ denote the rope length of K and let $C r(K)$ denote the crossing number of K. An important problem in geometric knot theory concerns the bound on $L(K)$ in terms of $\operatorname{Cr}(K)$. It is well known that there exist positive constants c_{1}, c_{2} such that for any knot or link $K, c_{1} \cdot(C r(K))^{3 / 4} \leq L(K) \leq c_{2} \cdot(C r(K))^{3 / 2}$. It is also known that for any real number p such that $3 / 4 \leq p \leq 1$, there exists a family of knots $\left\{K_{n}\right\}$ with the property that $C r\left(K_{n}\right) \rightarrow \infty$ (as $n \rightarrow \infty)$ such that $L\left(K_{n}\right)=O\left(C r\left(K_{n}\right)^{p}\right)$. In this talk, we show that the power $(C r(K))^{3 / 2}$ can be further reduced if the link K has a closed braid form such that the number of crossings in the braid is of the same order as $C r(K)$. (Received January 25, 2005)

