1011-68-292 **Jack H. Lutz*** (lutz@cs.iastate.edu), Department of Computer Science, 226 Atanasoff Hall, Ames, IA 50011. *Dimensions of Copeland-Erdös Sequences*. Preliminary report.

The base-k Copeland-Erdös sequence given by an infinite set A of positive integers is the infinite sequence $CE_k(A)$ formed by concatenating the base-k representations of the elements of A in numerical order. This talk concerns the finite-state dimension dim_{FS}($CE_k(A)$), the finite-state strong dimension Dim_{FS}Dim_{FS}($CE_k(A)$), the zeta-dimension Dim_{ζ}(A), a kind of discrete fractal dimension discovered many times over the past few decades, and the lower zeta-dimension dim_{ζ}(A), a dual of Dim_{ζ}(A). We prove the following.

- 1. $\dim_{FS}(CE_k(A)) \ge \dim_{\zeta}(A)$. This extends the 1946 proof by Copeland and Erdös that the sequence $CE_k(PRIMES)$ is Borel normal.
- 2. $\operatorname{Dim}_{\mathrm{FS}}(\operatorname{CE}_k(A)) \ge \operatorname{Dim}_{\zeta}(A).$
- 3. These bounds are tight in the strong sense that these four quantities can have (simultaneously) any four values in [0, 1] satisfying the four above-mentioned inequalities.

This is joint work with Xiaoyang Gu and Philippe Moser. (Received August 30, 2005)