1056-03-649 Julia F. Knight*, knight.1@nd.edu, and Karen Lange, klange1@nd.edu. Generalized power series and real closed fields: Part II.

Mourgues and Ressayre showed that every real closed field has an integer part. Their construction involves mapping the given real closed field R isomorphically onto a truncation closed sub-field of the field $k\langle\langle G \rangle\rangle$, where G is the natural value group of R and k is the residue field. We refer to the image of $r \in R$ as its *development*. If G has cardinality κ , then the developments may have arbitrary ordinal length less than κ^+ . We consider the case where R is countable, and we list the elements of a transcendence base for R over $k-r_1, r_2, \ldots$. In terms of this list, the Mourgues and Ressayre construction becomes canonical. Let R_n be the real closure of $R_n(r_1, \ldots, r_n)$. By a result of Shepherdson, the elements of R_1 have developments of length at most ω . We show that elements of R_n have developments of length at most ω . We show that elements of R_n have developments of length at most ω single infinitesimal, we produce a sequence of elements r_1, r_2, \ldots such that for each $n \geq 1$, R_n contains an element whose development has length $\omega^{(n-1)}$. (Received September 15, 2009)