1056-05-1139 Darren A Narayan* (dansma@rit.edu), School of Mathematical Sciences, 85 Lomb Memorial Drive, Rochester Institute of Technology, Rochester, NY 14623-5604. Intermediate Ordered Colorings of Graphs.
Given a graph G, a function $f: V(G) \rightarrow\{1,2, \ldots, k\}$ is an ordered coloring or k-ranking of G if $f(u)=f(v)$ implies every $u-v$ path contains a vertex w such that $f(w)>f(u)$. A k-ranking is minimal if the reduction of any label greater than 1 violates the described ranking property. The rank number of a graph, denoted $\chi_{r}(G)$, is the minimum k such that G has a minimal k-ranking. The arank number of a graph, denoted $\psi_{r}(G)$, is the maximum k such that G has a minimal k-ranking. It was asked by Laskar, Pillone, Eyabi, and Jacob if there is a family of graphs where minimal k-rankings exist for all $\chi_{r}(G) \leq k \leq \psi_{r}(G)$. We given an affirmative response to their question showing that all intermediate minimal k-rankings exist for all paths, cycles, and $K_{n_{1}, n_{2}, \ldots,} K_{n_{p}}$ where $n_{i+1}=n_{i}-1$ for all $1 \leq i \leq p-1$. (Received September 22, 2009)

