1056-05-1319 Tariq Akef Alraqad* (tariq. alraqad@northern.edu), 1200 South Jay street, Northern State University, Department of Math \& Science, Aberdeen, SD 57401, and Mohan Shrikhande (mohan.shrikhande@cmich.edu), Department of Mathematics, Central Michigan University, Mt. Pleasant, MI 48859. Some Results On λ-Designs With Two Block Sizes. Preliminary report.
A λ-design is a family $\mathcal{B}=\left\{B_{1}, B_{2}, \cdots, B_{v}\right\}$ of subsets of $X=\{1,2, \ldots, v\}$ such that $\left|B_{i} \cap B_{j}\right|=\lambda$ for all $i \neq j$ and not all B_{i} are of the same size. The only known example of λ-designs (called type- 1 designs) are those obtained from symmetric designs by a certain complementation procedure. Ryser and Woodall independently conjectured that all λ-designs are type-1. In this paper, we consider λ designs with exactly two block sizes. Let $g=g c d\left(r-1, r^{*}-1\right)$, where r and r^{*} are the two replication numbers. We show that the Ryser-Woodall conjecture is true for all λ-designs with two block sizes and $g=7$ or $9 \leq g \leq 18$. We also give two results on λ-designs with two block sizes on $v=9 p+1$ and $12 p+1$ points, where p is a prime. (Received September 21, 2009)

