Kevin Black* (Kevin_Black@HMC.Edu), Department of Mathematics, 301 Platt Boulevard, Harvey Mudd College, Claremont, CA 91711, and Daniel Leven (danlev151@gmail.com), Department of Mathematics, Rutgers University - Hill Center, 110 Frelinghuysen Rd, Piscataway, NJ 08854-8019. Finding Ramsey Numbers.
The Ramsey number $R(G, H)$ is the smallest positive integer n such that any graph on n vertices contains G as a subgraph or H in the complement. We derive a new upper bound of 26 for the Ramsey number $R\left(K_{5}-P_{3}, K_{5}\right)$, improving on the previous upper bound of 28 . This leaves $25 \leq R\left(K_{5}-P_{3}, K_{5}\right) \leq 26$.

We also show, with the help of a computer, that $R\left(B_{2}, B_{6}\right)=17$ and $R\left(B_{2}, B_{7}\right)=18$ by full enumeration of $\left(B_{2}, B_{6}\right)$ good graphs and $\left(B_{2}, B_{7}\right)$-good graphs, where B_{n} is the book graph with n triangular pages. (Received August 01, 2009)

