1056-05-1512 Ira M. Gessel* (gessel@brandeis.edu), Department of Mathematics, MS 050, Brandeis University, Waltham, MA 02453-2728. *Flag descents and P-partitions.*

A signed permutation of $[n] = \{1, 2, ..., n\}$ is a sequence $a_1 a_2 \cdots a_n$ of integers such that $|a_1||a_2| \cdots |a_n|$ is a permutation of [n]. Let B_n denote the set of signed permutations of [n]. In 2001, Adin, Brenti, and Roichman introduced the *flag-descent* statistic on signed permutations: for $\pi \in B_n$ we define $fdes(\pi)$ to be $2 des(\pi) + \epsilon(\pi)$, where $des(a_1 a_2 \cdots a_n)$ is the number of $i \in [n-1]$ for which $a_i > a_{i+1}$, and $\epsilon(a_1 a_2 \cdots a_n)$ is 1 if $a_1 < 0$ and 0 if $a_1 > 0$. Adin, Brenti, and Roichman proved that

$$\sum_{k=0}^{\infty} (k+1)^n t^k = \frac{\sum_{\pi \in B_n} t^{\text{fdes}(\pi)}}{(1-t)(1-t^2)^n}.$$

I will explain how Richard Stanley's theory of P-partitions can be used to prove this and related formulas. (Received September 22, 2009)