Richard P. Stanley* (rstan@math.mit.edu), Department of Mathematics, M.I.T., Cambridge, MA 02139. Alternating permutations.
An alternating permutation $w=a_{1} \cdots a_{n}$ of $1,2, \ldots, n$ is a permutation such that $a_{i}>a_{i+1}$ if and only if i is odd. If E_{n} (called an Euler number) denotes the number of alternating permutations of $1,2, \ldots, n$, then $\sum_{n \geq 0} E_{n} \frac{x^{n}}{n!}=\sec x+\tan x$. We will discuss such topics as other occurrences of Euler numbers in mathematics, umbral enumeration of classes of alternating permutations, longest alternating subsequences of permutations, and a connection with the $c d$-index of the symmetric group \mathfrak{S}_{n}. The $c d$-index is a noncommutative polynomial in the variables c and d that encodes the number of permutations $a_{1} \cdots a_{n} \in \mathfrak{S}_{n}$ with specified values of i for which $a_{i}>a_{i+1}$. (Received August 26, 2009)

