Ralucca Gera, Naval Postgraduate School, Grady Bullington (eroh@uwosh.edu), University of Wisconsin Oshkosh, Linda Eroh* (eroh@uwosh.edu), University of Wisconsin Oshkosh, 800 Algoma Blvd., Oshkosh, WI 54963, and Steven J Winters, University of Wisconsin Oshkosh. On k-circuit distance in graphs.
A delivery person must leave a central location, deliver packages at a number of addresses, and return. Naturally, he/she wishes to find the most efficient route. This motivated the definition of $(k-1)$-stop-return distance by Gadzinski, Sanders, and Xiong, now called k-circuit distance. Given a set of k distinct vertices $\mathcal{S}=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ in a simple graph G, the k-circuit-distance of set \mathcal{S} is defined to be

$$
d_{k}(\mathcal{S})=\min _{\theta \in \mathcal{P}(\mathcal{S})}\left(d\left(\theta\left(x_{1}\right), \theta\left(x_{2}\right)\right)+d\left(\theta\left(x_{2}\right), \theta\left(x_{3}\right)\right)+\ldots+d\left(\theta\left(x_{k}\right), \theta\left(x_{1}\right)\right)\right)
$$

where $\mathcal{P}(\mathcal{S})$ is the set of all permutations from \mathcal{S} onto \mathcal{S}. Thus, $d_{k}\left(x_{1}, \ldots, x_{k}\right)$ is the length of the shortest circuit through the vertices $\left\{x_{1}, \ldots, x_{k}\right\}$.

The 2-circuit distance is twice the standard distance between two vertices. We present results about the k-circuit radius, k-circuit diameter, k-circuit center and k-circuit periphery, with particular attention to $k=3$. We also note some relationships between k-circuit distance and Steiner distance. (Received September 22, 2009)

