Reza Zamani (zamani@illinois.edu), Computer Science Dept., University of Illinois, Urbana, IL 61801, and Douglas B. West* (west@math. uiuc.edu), Mathematics Dept., University of Illinois, Urbana, IL 61801. Spanning cycles through specified edges in bipartite graphs.
Pósa proved that if G is an n-vertex graph in which any two nonadjacent vertices have degree sum at least $n+k$, then G has a spanning cycle containing any specified family of disjoint paths with a total of k edges. We consider the analogous problem for a bipartite graph G with n vertices and parts of equal size. Let F be a subgraph of G whose components are nontrivial paths. Let k be the number of edges in F, and let t_{1} and t_{2} be the numbers of components of F having odd and even length, respectively. For $n \geq 9 k+4$, there is a spanning cycle in G containing F if any two nonadjacent vertices in opposite partite sets have degree-sum at least $n / 2+\tau(F)$, where $\tau(F)=\lceil k / 2\rceil+\epsilon$ (here $\epsilon=1$ if $t_{1}=0$ or if $\left(t_{1}, t_{2}\right) \in\{(1,0),(2,0)\}$, and $\epsilon=0$ otherwise). The threshold on the degree-sum is sharp. (Received September 18, 2009)

