Gregory B Hurst* (ghurst2@illinois.edu), 808 Coventry Point, Springfield, IL 62702. An elementary proof of Touchard's Congruence.
The nth Bell number, denoted B_{n}, is the number of ways a set of n elements can be partitioned into nonempty subsets. It is easy to see that B_{n} is the sum of $S(n, k)$ where k ranges from 1 to n and $S(n, k)$ is the number of ways to partition a set of n elements into k nonempty subsets. We will consider a formula for the $n+j$ th Bell number which has just been discovered in the last two years. This formula states that B_{n+j} is the sum of $S(n, k)$ times a polynomial of degree j. This polynomial, denoted $P_{j}(k)$, also satisfies the recurrence relation $P_{j+1}(k)=P_{j}(k+1)+k P_{j}(k)$ with base case $P_{0}(k)=1$. Using this formula for B_{n+j}, relations such as Touchard's congruence:

$$
B_{n+p^{r}} \equiv B_{n+1}+r B_{n} \quad \bmod p
$$

where p is prime, can be proven elementarily. (Received September 19, 2009)

