1056-06-1283 Benjamin Wells* (wells@usfca.edu), Department of Mathematics, University of San Francisco, 2130 Fulton Street, San Francisco, CA 94117. A gap theorem for the poset of sequential degrees. Preliminary report.

Let $m = \{0, 1, ..., m - 1\}$ be the finite alphabet for a finite-state no-delay machine (or Moore transducer) M with states Q_M , initial state I_M , state-transition function $(q, k) \to qk$, and output function $\mathcal{O}_M : Q_M \to m$. For $\alpha, \beta \in {}^{\omega}m, \alpha M = \beta$ when inductively defined states and outputs satisfy $q_0 = I_M \alpha_0, q_{i+1} = q_i \alpha_{i+1}$, and $q_i \mathcal{O}_M = \beta_i$ for all $i \in \omega$. We write $\alpha \Rightarrow \beta$ and say β is sequentially reducible to α iff there is such an M. Then \Rightarrow is a preorder on ${}^{\omega}m$, and $D = \langle {}^{\omega}m/\Leftrightarrow, \Leftarrow/\Leftrightarrow \rangle$ is the corresponding poset of sequential degrees. Let $B_{\Omega(m)}$ be the Boolean algebra with number of generators equal to the count of nondistinct prime divisors of m.

Gap Theorem. Let ψ be an incompressible sequence. Then the shift interval of ψ

$$\{\delta \in D : \psi \Leftarrow \delta \Leftarrow \psi^{\sharp} = \psi|^{\omega \sim \{0\}} m\}$$

is a Boolean subalgebra order-isomorphic to $B_{\Omega(m)}$, and the order closure in D of the shift chain of ψ is order-isomorphic to the chain sum $B_{\Omega(m)} \oplus \mathbb{Z}$. (Received September 21, 2009)