1056-11-1056 David C. Torney* (dtorney@valornet.com), 5 Sky High Way, Jemez Springs, NM 87025. Prime Tuples.
Consider h-tuples of prime integers with fixed increments: $\left(p, p+2 k_{1}, p+2 k_{2}, \ldots, p+2 k_{h-1}\right) ; 2 \leq h \in \mathbb{N}, k_{1}<k_{2}<$ $\cdots<k_{h-1} \in \mathbb{N}$. These are feasible when having $>h$ instances. The infinitude of prime pairs has been an enduring open conjecture; proof of the infinitude for feasible prime h-tuples involves the following.
P. Kurlberg's Thm. 4, in Intl. J. Num. Theory, 5(3), 489-513 (2009) ensures polynomials $f \in \mathbb{Z}[x], x \in \mathbb{Z}$ have range, modulo square-free $q \rightarrow \infty$, with null intersection with intervals of L consecutive integers with asymptotic probability $\exp \{-\rho L\}, \rho$ denoting the density of the range. An f is specified with respective range intersecting $\left[p_{n}+1, p_{n}+2 \ldots, p_{n}^{2}-\right.$ $\left.2 k_{h-1}\right] ; n \in \mathbb{N}-1$, only in integers which commence an h-tuple. The first entries of these h-tuples are non-congruent, $\bmod p$, to any member of $\left\{0 \cup_{j=1}^{h-1}-2 k_{j}(\bmod p)\right\} ; p=p_{2}, p_{3}, \ldots, p_{n} . f$ derives from degree- $\left(p_{i}-1\right)$ polynomials whose ranges are the respective, allowed congruences; $i=2,3, \ldots, n$. It is established that $\left[p_{n}+1, p_{n}+2, \ldots, p_{n}^{2}\right]$ must asymptotically contain an instance of the given prime h-tuple. (Received September 20, 2009)

