Dibyajyoti Deb* (ddeb@ms.uky.edu), Department of Mathematics, University of Kentucky, Lexington, KY 40503. Poincaré Series of Diagonal Polynomials . Preliminary report.

Let $p$ be a prime number and $f\left(x_{1}, \ldots, x_{n}\right)$ be a polynomial with coefficients in $\mathbb{Z}$, the ring of integers. Let $c_{m}$ denote the number of solutions of $f \equiv 0\left(\bmod p^{m}\right)$ with $c_{0}=1$. Then the Poincaré Series $P_{f}(y)$ is the generating function

$$
P_{f}(y)=\sum_{i=0}^{\infty} c_{i} y^{i}
$$

Denef proved that $P_{f}(y)$ is always a rational function. We explicitly compute $P_{f}(y)$ when $f$ is an arbitrary diagonal polynomial, extending results of Qing Han. This is a special case of our main work that deals with diagonal polynomials over certain UFD's. We also present some new results that give a criterion for an element to be an $n^{\text {th }}$ power in a complete discrete valuation ring.
(Received September 21, 2009)

