1056-11-1529 Ekin Ozman* (ozman@math.wisc.edu). Points on Quadratic Twists of $X_{0}(N)$.
Let $X^{d}(N)$ be the modular curve described as qudratic twist of $X_{0}(N)$ by a quadratic field $K=\mathbb{Q}(\sqrt{d})$ and w_{N}. Rational points on this twist are K-rational points of $X_{0}(N)$ that are fixed by σ composed with w_{N} where σ is the generator of $\operatorname{Gal}(K / \mathbb{Q})$. Unlike $X_{0}(N)$, it's not immediate to say that there are points (global or local) on $X^{d}(N)$. Given (N, d, p) we give necessary and sufficient conditions for existence of a \mathbb{Q}_{p}-rational point on $X^{d}(N)$, answering the following question of Ellenberg:

For which d and N there exists points on $X^{d}(N)$ for every completion of \mathbb{Q} ? (Received September 22, 2009)

