A New Approach.
The height of a polynomial is its greatest coefficient in absolute value. Polynomials of unit height are flat. The cyclotomic polynomial $\Phi_{n}(x)$ is the minimal polynomial of any primitive nth root of unity. The order of $\Phi_{n}(x)$ is the number of distinct odd primes dividing n. All cyclotomic polynomials of orders 0,1 and 2 are flat, and some of orders 3 and 4 are flat as well.

In this paper, we build a new theory for analyzing the coefficients of $\Phi_{n}(x)$ by considering it as a gcd of simpler polynomials. We first obtain a generalization of a result known as periodicity: If n is a positive integer and s and t primes such that $n-\varphi(n)<s<t$ and $s \equiv \pm t(\bmod n)$, then $\Phi_{n s}(x)$ and $\Phi_{n t}(x)$ have the same height.

We also use this theory to provide two new families of flat cyclotomic polynomials. One, of order 3, was conjectured by Broadhurst: Let $p<q<r$ be primes and w a positive integer such that $r \equiv \pm w(\bmod p q), p \equiv 1(\bmod w)$ and $q \equiv 1$ $(\bmod w p)$. Then $\Phi_{p q r}(x)$ is flat. The other is the first general family of order 4. We prove that $\Phi_{p q r s}(x)$ is flat for primes p, q, r, s where $q \equiv-1(\bmod p), r \equiv \pm 1(\bmod p q)$, and $s \equiv \pm 1(\bmod p q r)$. (Received September 18, 2009)

