Eric S. Rowland* (erowland@tulane.edu), Mathematics Department, Tulane University, New Orleans, LA 70118. The number of nonzero binomial coefficients modulo p^{α}.
In 1947 Nathan Fine used Lucas' theorem to compute the number $a_{p}(n)$ of binomial coefficients $\binom{n}{m}, 0 \leq m \leq n$, that are not divisible by a prime p : If $n_{l} \cdots n_{1} n_{0}$ is the standard base- p representation of n, then $a_{p}(n)=\prod_{i=0}^{l}\left(n_{i}+1\right)$.

One can set up (using generating functions, for example) a recursive algorithm to compute for a given n the number of integers $0 \leq m \leq n$ such that there are precisely c carries involved in adding m to $n-m$ in base b. For $b=p$, Kummer's theorem renders this recurrence as a generalization of Fine's theorem, giving a way to compute the number $a_{p^{\alpha}}(n)$ of nonzero binomial coefficients modulo p^{α} in terms of the base- p digits of n. For example, for $\alpha=2$ we get the explicit expression

$$
a_{p^{2}}(n)=\prod_{i=0}^{l}\left(n_{i}+1\right) \cdot\left(1+\sum_{i=0}^{l-1} \frac{p-\left(n_{i}+1\right)}{n_{i}+1} \cdot \frac{n_{i+1}}{n_{i+1}+1}\right)
$$

(Received September 18, 2009)

