1056-13-1539 Jintai Ding (jintai.ding@uc.edu), Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, Timothy J Hodges* (timothy.hodges@uc.edu), Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221, and Victoria Kruglov (kruglov@email.uc.edu), Department of Mathematical Sciences, University of Cincinnati, Cincinnati, OH 45221. Growth of the ideal generated by a quadratic Boolean function. Preliminary report.
We give exact formulas for the growth of the ideal $A \lambda$ for λ a quadratic element of the algebra of Boolean functions $A=\mathbb{F}_{2}\left[x_{1}, \ldots, x_{n}\right] /\left(x_{1}^{2}+x_{1}, \ldots, x_{n}^{2}+x_{n}\right)$ over the Galois field \mathbb{F}_{2}. That is, we calculate $\operatorname{dim} A_{k} \lambda$ where A_{k} is the subspace of elements of degree less than or equal to k. For instance, if $\lambda=x_{1} x_{2}+\cdots+x_{n-1} x_{n}$, then

$$
\operatorname{dim} A_{k} \lambda= \begin{cases}\delta(n, k), & \text { if } 0 \leq k<n / 2 \\ \delta(n, k)-(\epsilon(k-n / 2)+1) 2^{\frac{n}{2}-1}, & \text { if } n / 2 \leq k \leq n\end{cases}
$$

where $\delta(n, k)=\sum_{i=0}^{\lfloor k / 4\rfloor}\binom{n}{k-4 i}+\sum_{i=0}^{\lfloor(k-1) / 4\rfloor}\binom{n}{k-1-4 i}$ and $\epsilon(k)=\cos \left(\frac{k \pi}{2}\right)+\sin \left(\frac{k \pi}{2}\right)$. These results clarify some of the assertions made in a recent article of Yang and Chen concerning the efficiency of the XL algorithm in cryptography. (Received September 22, 2009)

