1056-13-621 Silvia Saccon* (s-ssaccon1@math.unl.edu), Department of Mathematics, University of Nebraska-Lincoln, Lincoln, NE 68588-0130. Modules over one-dimensional local rings of infinite Cohen-Macaulay type. Preliminary report.

Let (R, \mathfrak{m}) be a one-dimensional Noetherian local ring whose \mathfrak{m} -adic completion \widehat{R} is reduced. We consider the monoid $\mathfrak{C}(R)$ of isomorphism classes of maximal Cohen-Macaulay R-modules (together with $[0_R]$) with operation given by $[M] + [N] = [M \oplus N]$. This monoid carries information about direct-sum decompositions of maximal Cohen-Macaulay R-modules. In order to describe $\mathfrak{C}(R)$, it is useful to consider $\mathfrak{C}(R)$ as a submonoid of $\mathfrak{C}(\widehat{R})$, since $\mathfrak{C}(\widehat{R})$ has a very simple structure by the Krull-Remak-Schmidt theorem. Fundamental in this study is the notion of rank of a maximal Cohen-Macaulay \widehat{R} -module M. (The rank of M is the tuple consisting of the vector-space dimensions of M_P over \widehat{R}_P , where P ranges over the minimal prime ideals of \widehat{R} .) The key to describing $\mathfrak{C}(R)$ is to determine the possible ranks of indecomposable maximal Cohen-Macaulay \widehat{R} -modules. Other authors have characterized the monoid $\mathfrak{C}(R)$ when R has finite Cohen-Macaulay type. In this talk, I will discuss the structure of $\mathfrak{C}(R)$ when R has infinite Cohen-Macaulay type. (Received September 14, 2009)