1056-15-935

Elizabeth J. Bodine* (ebodine@math.wsu.edu), Department of Mathematics, Washington State University, Box 643113, Pullman, WA 99164-3113, and Judith J. McDonald (jmcdonald@math.wsu.edu), Department of Mathematics, Washington State University, Box 643113, Pullman, WA 99164-3113. Spectrally arbitrary patterns of matrices over finite fields.

A zero-nonzero pattern \mathcal{A} is spectrally arbitrary over a finite field \mathbb{F}_q provided that for each monic polynomial $r(x) \in \mathbb{F}_q[x]$, there exists a matrix \mathcal{A} over \mathbb{F}_q with zero-nonzero pattern \mathcal{A} such that the characteristic polynomial $p_{\mathcal{A}}(x) = r(x)$. This is analogous to the study of spectrally arbitrary patterns over \mathbb{R} , but yields some very different results that rely heavily on the structure of finite fields. In this talk, we will investigate several zero-nonzero patterns and identify over which finite fields these patterns are spectrally arbitrary. (Received September 18, 2009)