1056-20-645 Leah Childers* (leah@math.lsu.edu), Lockett Hall, Department of Mathematics, Louisiana State University, Baton Rouge, LA 70803. Simply intersecting pairs in the mapping class group. The Torelli group, \mathcal{I} , is the subgroup of the mapping class group consisting of elements that act trivially on the homology of the surface. There are three types of elements that naturally arise in studying \mathcal{I} : bounding pair maps (BP-maps), separating twists, and simply intersecting pair maps (SIP-maps). Historically the first two types of elements have been the focus of the literature on \mathcal{I} , while SIP-maps have received relatively little attention until recently, due to an infinite presentation of \mathcal{I} introduced by Andrew Putman that uses all three types of elements. We will show that the subgroup generated by SIP-maps is an infinite index subgroup of \mathcal{I} and discuss further properties of this subgroup and its elements. (Received September 15, 2009)