1056-22-724 Kendall Williams* (kendallwilliams1983@yahoo.com). Members of sums of idempotents in $\beta \mathbb{N}$. Preliminary report.

Let (S, \cdot) be a discrete semigroup. One may extend the operation on S to βS , the Stone-Čech compactification of S, making $(\beta S, \cdot)$ a compact right topological semigroup. If $a_1, a_2, ..., a_k \in \mathbb{Z}$ with $a_k > 0$ and $p = p + p \in \beta \mathbb{N}$, then $a_1p + a_2p + ... + a_kp \in \beta \mathbb{N}$. If $A \in a_1p + a_2p + ... + a_kp$, then there is a sequence $\langle x_t \rangle_{t=1}^{\infty}$ in \mathbb{N} such that whenever $F_1, F_2, ..., F_k$ are finite subsets of \mathbb{N} with max $F_i < \min F_{i+1}$ for all $i \in \{1, 2, ..., k-1\}$, one has $\sum_{i=1}^k a_i \sum_{t \in F_i} x_t \in A$. We investigate what expressions must lie in members of $a_1p_1 + a_2p_2 + ... + a_kp_k$ where $p_1, p_2, ..., p_k$ are idempotents, not necessarily the same. For example, we show that if p and q are idempotents and $A \in a_1p + a_2q + a_3p$, then there exist sequences $\langle x_t \rangle_{t=1}^{\infty}$ and $\langle y_t \rangle_{t=1}^{\infty}$ such that whenever F_1, F_2 , and F_3 are finite subsets of \mathbb{N} with max $F_1 < \min F_2$ and max $F_2 < \min F_3$, one has $a_1 \sum_{t \in F_1} x_t + a_2 \sum_{t \in F_2} y_t + a_3 \sum_{t \in F_3} x_t \in A$. (Received September 16, 2009)