Jerome Goddard II* (jg440@msstate.edu), P.O.Drawer MA, Mississippi State, MS 39762, EunKyoung Lee (eunkyoung165@gmail.com), Department of Mathematics, Pusan National University, Pusan, South Korea, and Ratnasingham Shivaji (shivaji@ra.msstate.edu), P.O.Drawer MA, Mississippi State, MS 39762. On the existence of a double S-shaped bifurcation curve.
We study the positive solutions to boundary value problems of the form

$$
\begin{aligned}
-u^{\prime \prime}-\frac{n-1}{r} u^{\prime} & =\lambda f(u) ; \quad \Omega \\
-\alpha(x, u) u^{\prime}(r)+[1-\alpha(x, u)] u(r) & =0 ; \quad|x|=R_{1} \\
\alpha(x, u) u^{\prime}(r)+[1-\alpha(x, u)] u(r) & =0 ; \quad|x|=R_{2}
\end{aligned}
$$

where $\Omega=\left\{x\left|R_{1}<|x|<R_{2}\right\}\right.$ is an annulus in \mathbb{R}^{n} with $n \geq 1, \lambda$ is a positive parameter, $f:[0, \infty) \longrightarrow(0, \infty)$ is a smooth function which is sublinear at ∞, and $\alpha(x, u): \Omega \times \mathbb{R} \longrightarrow[0,1]$ is a non-decreasing smooth function. In particular, we discuss the existence of at least two positive radial solutions for $\lambda \gg 1$. Further, we discuss the existence of a double S-shaped bifurcation curve when $n=1, \Omega=(0,1)$, and $f(s)=e^{\frac{\beta s}{\beta+s}}$ with $\beta \gg 1$. (Received September 01, 2009)

