1056-34-350Jerome Goddard II* (jg440@msstate.edu), P.O.Drawer MA, Mississippi State, MS 39762,
EunKyoung Lee (eunkyoung165@gmail.com), Department of Mathematics, Pusan National
University, Pusan, South Korea, and Ratnasingham Shivaji (shivaji@ra.msstate.edu),
P.O.Drawer MA, Mississippi State, MS 39762. On the existence of a double S-shaped bifurcation
curve.

We study the positive solutions to boundary value problems of the form

$$-u'' - \frac{n-1}{r}u' = \lambda f(u); \quad \Omega$$

- $\alpha(x, u)u'(r) + [1 - \alpha(x, u)]u(r) = 0; \quad |x| = R_1$
 $\alpha(x, u)u'(r) + [1 - \alpha(x, u)]u(r) = 0; \quad |x| = R_2$

where $\Omega = \{x | R_1 < |x| < R_2\}$ is an annulus in \mathbb{R}^n with $n \ge 1$, λ is a positive parameter, $f : [0, \infty) \longrightarrow (0, \infty)$ is a smooth function which is sublinear at ∞ , and $\alpha(x, u) : \Omega \times \mathbb{R} \longrightarrow [0, 1]$ is a non-decreasing smooth function. In particular, we discuss the existence of at least two positive radial solutions for $\lambda \gg 1$. Further, we discuss the existence of a double S-shaped bifurcation curve when n = 1, $\Omega = (0, 1)$, and $f(s) = e^{\frac{\beta s}{\beta + s}}$ with $\beta \gg 1$. (Received September 01, 2009)