Jaffar Ali* (jahameed@fgcu.edu), \#450, Library, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, FL 33965, and Ratnasingham Shivaji (shivaji@ra.msstate.edu), Department of Mathematics, Mississippi State University, Mississippi State, MS 39759. Multiple positive solutions for a class of p - q-Laplacian systems with multiple parameters and combined nonlinear effects.
Consider the system

$$
\left\{\begin{aligned}
-\Delta_{p} u & =\lambda_{1} f(v)+\mu_{1} h(u), \text { in } \Omega \\
-\Delta_{q} v & =\lambda_{2} g(u)+\mu_{2} \gamma(v), \text { in } \Omega \\
& u=0=v, \text { on } \partial \Omega
\end{aligned}\right.
$$

where $\Delta_{s} z=\operatorname{div}\left(|\nabla z|^{s-2} \nabla z\right) ; s>1, \lambda_{1}>0, \lambda_{2}>0, \mu_{1} \geq 0$ and $\mu_{2} \geq 0$ are parameters and Ω is a bounded domain in R^{n} with smooth boundary $\partial \Omega$. For some classes of non-negative monotone functions f, g, h and γ which satisfy

$$
\lim _{x \rightarrow \infty} \frac{f\left(M[g(x)]^{1 / q-1}\right)}{x^{p-1}}=0, \forall M>0,
$$

$\lim _{x \rightarrow \infty} \frac{h(x)}{x^{p-1}}=0$ and $\lim _{x \rightarrow \infty} \frac{\gamma(x)}{x^{q-1}}=0$, we discuss the existence of multiplicity of positive solutions for certain range of parameters $\lambda_{1}, \mu_{1}, \lambda_{2}$ and μ_{2}. We use the method of sub- and super-solutions to establish our results.
(Received September 22, 2009)

