David E. Molnar*, 30 Ridge Rd \#15, Ridgewood, NJ 07450. Diophantine Approximation for Alternate Forms of Continued Fractions.
The strength of a rational approximation p / q to an irrational x can be measured by the approximation coefficient, $\theta\left(x, \frac{p}{q}\right)=q^{2}\left|x-\frac{p}{q}\right|$. When p / q is a convergent of the classical continued fraction expansion of $x, \theta\left(x, \frac{p}{q}\right)$ is less than 1 . A partial converse due to Legendre states that if $\theta\left(x, \frac{p}{q}\right)<1 / 2$, then p / q is a convergent to x. Another classical result due to Vahlen states that of any two consecutive convergents to an irrational x, at least one must have approximation coefficient less than $1 / 2$. We look at results like these for a family of continued fraction expansions generalizing the classical theory. (Received September 22, 2009)

