1056-37-2021 Sasa Kocic* (s.kocic@utoronto.ca), Department of Mathematics, University of Toronto, 40 St. George Street, Toronto, ON M5S 2E4, Canada, and Hans Koch (koch@math.utexas.edu), 1 University Station, C1200, Austin, TX 78712. Renormalization and lower-dimensional Brjuno invariant tori of Hamiltonian systems.
KAM theory establishes the persistence of invariant tori with Diophantine frequency vectors under small perturbations of integrable Hamiltonian systems. In this talk, we will discuss a renormalization approach to the problem. We construct a renormalization scheme and apply it to prove the existence of lower-dimensional invariant tori (tori of dimension d, lower than the number of degrees of freedom $d+D$) with Brjuno frequency vectors in near-integrable Hamiltonian flows. For every Brjuno frequency vector $\omega \in \mathbb{R}^{d}$ and every vector $\Omega \in \mathbb{R}^{D}$ satisfying an arithmetic condition with respect to ω, there exists an analytic manifold \mathcal{W} of infinitely renormalizable Hamiltonian vector fields; each vector field on \mathcal{W} is shown to have an analytic invariant torus with frequency vector ω. (Received September 22, 2009)

