1056-47-1417 Waleed Khaled Al-Rawashdeh* (wrawashdeh@yahoo.com), 1601 S. Washington Court Apartment # K-7, Mount Pleasant, MI 48858. Weighted Composition Operators on Bergman Spaces in the Unit Ball.

Let φ be an analytic self-map of the unit ball \mathbb{B}_n in \mathbb{C}^n and let ψ be an analytic function on \mathbb{B}_n . For $\alpha > -1$ and p > 0 the weighted Bergman space $A^p_{\alpha}(\mathbb{B}_n)$ consists of holomorphic functions f in $L^p(\mathbb{B}_n, dv_{\alpha})$, that is,

$$A^p_{\alpha} = L^p(\mathbb{B}_n, dv_{\alpha}) \cap H(\mathbb{B}_n),$$

where $H(\mathbb{B}_n)$ denote the space of all holomorphic functions on \mathbb{B}_n , dv_{α} is the weighted Lebesgue measure given by

$$dv_{\alpha}(z) = (1 - |z|^2)^{\alpha} dv(z),$$

where dv is the volume measure on \mathbb{B}_n .

We characterize the boundedness and compactness of the weighted composition operator $W_{\psi,\varphi}$: $f \mapsto \psi(f \circ \phi)$ from A^p_{α} into A^q_{β} , where $0 and <math>-1 \le \alpha, \beta < \infty$, in terms of Carleson-type measures. The results use a certain integral transform that generalizes Berezin transform. (Received September 21, 2009)