1056-65-1716Jie Shen* (shen7@purdue.edu), Department of Mathematics, Purdue University, West Lafayette,
IN 47907. An Efficient Spectral Method for Acoustic Scattering from Rough Surfaces.

An efficient and accurate spectral method is presented for scattering problems with rough surfaces. A probabilistic framework is adopted by modeling the surface roughness as random process. An improved boundary perturbation technique is employed to transform the original Helmholtz equation in a random domain into a stochastic Helmholtz equation in a fixed domain. The generalized polynomial chaos (gPC) is then used to discretize the random space; and a Fourier-Legendre method to discretize the physical space. These result in a highly efficient and accurate spectral algorithm for acoustic scattering from rough surfaces. Numerical examples are presented to illustrate the accuracy and efficiency of the present algorithm. (Received September 22, 2009)