In 1872, Julius Petersen published a frequently rediscovered combinatorial proof of Fermat's theorem $a^{p} \equiv a(\bmod p)$, where p is a prime: If we color the spokes of a p-spoke wheel in a colors, and call two colorings equivalent if one can be rotated into the other, then every equivalence class contains p colorings except for the a equivalence classes consisting of a single monochromatic coloring. Petersen gave a similar proof of Wilson's theorem $(p-1)!\equiv-1(\bmod p)$, and Lucas's theorem $\binom{a p+b}{c p+d} \equiv\binom{a}{c}\binom{b}{d}(\bmod p)$, where $0 \leq b, d<p$ can be proved by the same idea: if a group of order p (or a power of p) acts on finite set S then the size of every orbit is either 1 or a multiple of p, so $|S|$ is congruent modulo p to the number of fixed points.

I will describe how this approach can be applied to find congruences for Bell numbers, derangement numbers, and other sequences of combinatorial interest. (Received September 15, 2009)

