Kien H. Lim* (kienlim@utep. edu), Department of Mathematical Sciences, 500 W. University Ave, University of Texas at El Paso, El Paso, TX 79968-0512. Bridging Proportional Reasoning and Algebraic Reasoning: A Focus on Co-variation and Invariance Using Contextualized Problems.
Proportion and algebra are typically connected via linear functions, by helping students relate $\mathrm{a} / \mathrm{b}=\mathrm{c} / \mathrm{x}$ to $\mathrm{y}=\mathrm{mx}$ which is subsequently extended to $\mathrm{y}=\mathrm{mx}+\mathrm{b}$. A way to deepen pre- and in-service teachers' understanding is to draw their attention to the structure underlying a contextualized-problem situation, by focusing on co-variation and invariance. Consider the following missing-value problem: Alex and Bob were running at the same speed around a track. Alex started first. When Alex had run 10 laps, Bob had run 6 laps. When Bob completed 15 laps, how many laps had Alex completed? 31% of 81 pre-service K-4 teachers over-generalized proportionality and chose 25 laps (40% chose 11 laps). Such a problem can help pre-service teachers recognize their disposition to apply proportional strategies to solve missing-value problems without attending to quantities and relationships. A follow-up question such as "write an equation to relate the number of laps Bob had completed, b, to laps Alex had completed, a," can help pre-service teachers recognize that the difference $\mathrm{a}-\mathrm{b}$ is invariant while a and b co-vary. For proportional situations, the ratio a / b is invariant. For inverse-proportional situations, the product ab is invariant. For other situations, the sum $\mathrm{a}+\mathrm{b}$ could be invariant. (Received September 08, 2009)

