curves of the angle function of a positive definite symmetric matrix.
Given a real $n \times n$ matrix A, write ϕ_{A} for the maximum angle by which A rotates any unit vector: $\phi_{A}:=\sup _{x \in S^{n-1}} \angle(x, A x)$. Suppose that A and B are positive definite symmetric (PDS) $n \times n$ matrices. Then their Jordan product $\{A, B\}:=$ $A B+B A$ is also symmetric, but not necessarily positive definite. If $\phi_{A}+\phi_{B} \geq \frac{\pi}{2}$, then there exists $S \in \mathrm{SO}_{n}$ such that $\left\{A, S B S^{-1}\right\}$ is indefinite. Of course, if A and B commute, then $\{A, B\}$ is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that $\phi_{A}+\phi_{B} \geq \frac{\pi}{2}$, what is $\inf \left\{\phi_{S}: S \in \mathrm{SO}_{n},\left\{A, S B S^{-1}\right\}\right.$ indefinite $\}$? In this talk we will describe the level curves of the angle function $x \mapsto \angle(x, A x)$ of a 3×3 PDS matrix, and discuss their interaction with those of a second such matrix. (Received September 14, 2009)

