1056-Z1-609 **Neeraj Bajracharya*** (neeraj@unt.edu), University of North Texas, Denton, TX 76201. Level curves of the angle function of a positive definite symmetric matrix.

Given a real $n \times n$ matrix A, write ϕ_A for the maximum angle by which A rotates any unit vector: $\phi_A := \sup_{x \in S^{n-1}} \angle (x, Ax)$. Suppose that A and B are positive definite symmetric (PDS) $n \times n$ matrices. Then their Jordan product $\{A, B\} := AB + BA$ is also symmetric, but not necessarily positive definite. If $\phi_A + \phi_B \ge \frac{\pi}{2}$, then there exists $S \in SO_n$ such that $\{A, SBS^{-1}\}$ is indefinite. Of course, if A and B commute, then $\{A, B\}$ is positive definite. Our work grows from the following question: if A and B are commuting positive definite symmetric matrices such that $\phi_A + \phi_B \ge \frac{\pi}{2}$, what is $\inf \{\phi_S : S \in SO_n, \{A, SBS^{-1}\}$ indefinite}? In this talk we will describe the level curves of the angle function $x \mapsto \angle (x, Ax)$ of a 3×3 PDS matrix, and discuss their interaction with those of a second such matrix. (Received September 14, 2009)