A. Lobb's investigation in 1999 of a generalization of Catalan's parenthesization problem introduced a class of numbers $L_{n, m}$ and another class of numbers $K_{n, m}$. Both can be extracted from Pascal's triangle, and used to establish that every Catalan number C_{n} can be expressed as a sum of $\lfloor n / 2\rfloor+1$ integers.

Arrays $L=\left(L_{n, m}\right)$ and $K=\left(K_{n, m}\right)$ can be used to construct an array $C=\left(c_{n, j}\right)$, studied by H. G. Forder in 1961. Array C gives the number of paths a rook can take from the upper left-hand corner on an $(n+1) \times(n+1)$ chessboard to the lower right-hand corner without crossing the main diagonal. There is a bijection between the set of such paths and the set of well-formed sequences with n pairs of left and right parentheses. The many other properties of C include the fact that $c_{n, j}$ is odd if and only if either $n=0$ or n is a Mersenne number. (Received September 19, 2009)

