1067-01-2392 Paul R. Bialek* (pbialek@tiu.edu), Department of Mathematics, Trinity International University, 2065 Half Day Rd, Deerfield, IL 60015. Euler's proof that every prime of the form $4 n+1$ is sum of two squares.
Fermat was the first to conjecture that an odd prime p can be expressed as the sum of two squares $x^{2}+y^{2}$ if and only if p is congruent to $1(\bmod 4)$. In his paper, "Proof of a theorem of Fermat that every prime number of the form $4 n+1$ is a sum of two squares" [E241], Euler outlines a proof of this conjecture. We will present a translation from the Latin and a summary of this previously untranslated paper. (Received September 23, 2010)

