We give an explicit construction of an ϵ-biased set over k bits of size $O\left(\frac{k}{\epsilon^{2} \log (1 / \epsilon)}\right)^{5 / 4}$. This improves upon previous explicit constructions when ϵ is roughly (ignoring logarithmic factors) in the range $\left[k^{-1.5}, k^{-0.5}\right]$. The construction builds on an algebraic-geometric code. However, unlike previous constructions we use low-degree divisors whose degree is significantly smaller than the genus. (Received September 19, 2010)

