1067-05-1205 Zi-Xia Song*, Department of Mathematics, University of Central Florida, Orlando, FL 32816. A Variation of the Classical Turán Type Problem.
Let $D=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ be an integer sequence with $d_{1} \geq d_{2} \geq \cdots \geq d_{n} \geq 0$. We say that D is graphic if there is a graph G with D its degree sequence. In those circumstances, G is called a realization of D. We consider an extremal problem for graphs as introduced by Erdös, Jacobson and Lehel in 1991. That is to find the minimum even integer t such that every graphic sequence $D=\left(d_{1}, d_{2}, \ldots, d_{n}\right)$ with $\sum_{i=1}^{n} d_{i}$ at least t has a realization containing K_{k} as a subgraph. They conjectured that $t=(k-2)(2 n-k+1)+2$. In this talk, we will survey the methods on solving this conjecture and recent results in this area on K_{k}-graphic sequences. (Received September 20, 2010)

