1067-05-1316 Elliot J Krop* (ElliotKrop@clayton.edu), Department of Mathematics, Clayton State University, 2000 Clayton State Blvd., Morrow, GA 30260, and Irina Krop (irina.krop@gmail.com), DePaul University, DePaul Center, 1E. Jackson, room 7122, Chicago, IL 60604. Almost-rainbow edge-colorings of some small subgraphs.
Let $f(n, p, q)$ be the minimum number of colors necessary to color the edges of K_{n} so that every K_{p} is at least q-colored. We improve current bounds on these nearly "anti-Ramsey" numbers, first studied by Erdős and Gyárfás. We show that $f(n, 5,9) \geq \frac{7}{4} n-3$, slightly improving the bound of Axenovich. We make small improvements on bounds of Erdős and Gyárfás by showing $\frac{5}{6} n+1 \leq f(n, 4,5)$ and for all even $n \not \equiv 1(\bmod 3), f(n, 4,5) \leq n-1$. For a complete bipartite graph $G=K_{n, n}$, we show an n-color construction to color the edges of G so that every $C_{4} \subseteq G$ is colored by at least three colors. This improves the best known upper bound of M. Axenovich, Z. Füredi, and D. Mubayi. Keywords: Ramsey theory, generalized Ramsey theory, rainbow-coloring, edge-coloring, Erdős problem

[^0]
[^0]: (Received September 20, 2010)

