Kim A.S. Factor and Sarah K. Merz* (smerz@pacific.edu), Department of Mathematics, The University of the Pacific, Stockton, CA 95211, and Yoshio Sano. The (l, m)-step competition number of a graph.
Roberts introduced the competition number, $k(G)$ of a graph G : the smallest k so that G, together with k isolated vertices, is the competition graph of some acyclic digraph. The notion of the $(1,2)$-step competition graph, more generally the (l, m)-step competition graph, of a digraph was introduced by Factor and Merz. The (1,2)-step competition graph of digraph D, denoted $C_{(1,2)}(D)$ is a graph with vertex set $V(D)$ so that for $x \neq y,\{x . y\} \in E\left(C_{(1,2)}(D)\right)$ if and only if for some vertex $z \in V(D)$, $\operatorname{dist}_{D-y}(x, z) \leq 2$ and $\operatorname{dist}(y, z)=1$ or $\operatorname{dist}_{D-x}(y, z) \leq 2$ and $\operatorname{dist}(x, z)=1$. We introduce the (l, m)-step competition number of a graph and give bounds or the exact values for some graphs. (Received September 20, 2010)

