1067-05-1667 Tianhui Cai* (tcai@fas.harvard.edu), 174 Cabot Mail Center, 60 Linnaean Street, Cambridge, MA 02138. Coin set extensions in the greedy change-making problem.
Given a finite sequence $A=\left(1, a_{1}, \ldots, a_{k}\right)$ of positive integer coin denominations, we can make change for a positive integer amount x using the greedy algorithm, that is, by iteratively choosing the largest coin value $a_{i_{1}} \leq x$, then the largest coin $a_{i_{2}} \leq x-a_{i_{1}}$, and so on. Call a coin set orderly if, for every positive integer x, the greedy algorithm makes change for x with the fewest possible number of coins. Call a coin set B an extension of a coin set A if $B \supset A$ and all coins in $B-A$ are larger than the largest coin in A. Call a coin set an obstruction if it cannot be extended to an orderly coin set. We present a new characterization of orderly coin sets, and use this characterization to find simple conditions for when a one-coin extension is orderly. We also present a series of sufficient conditions to determine if a coin set is an obstruction, and we fully characterize all obstructions of length four. (Received September 21, 2010)

