1067-05-1695 E. Rodney Canfield*, Department of Computer Science, University of Georgia, Athens, GA 30602. The Asymptotic Hadamard Conjecture. Preliminary report.

The Hadamard Conjecture states that for every integer n which is divisable by 4 there is an $n \times n$ matrix over $\{ \pm 1\}$ whose rows are pairwise orthogonal. The first value of n in question is 668 . Let $H_{n, t}$ equal the number of $n \times t$ matrices over $\{ \pm 1\}$ whose rows are pairwise orthogonal. The Asymptotic Hadamard Conjecture states that for $t>n^{1+\epsilon}$

$$
H_{n, 4 t} \sim \frac{2^{4 n t+(n-1)^{2}}}{(8 \pi t)^{d / 2}}, \quad d=\binom{n}{2}
$$

Warwick de Launey and David Levin have proven the conjecture for $t>n^{12+\epsilon}$ (2010). We review their work, and report on our efforts to improve upon it. (Received September 21, 2010)

