1067-05-1738 Zachary Kudlak* (zachary.kudlak@msmc.edu), Mount Saint Mary College, 333 Powell Avenue, Newburgh, NY 12550, and Luboš Thoma. On a (p, q)-edge coloring of K_{n}.
For integers $p \leq n$ and $q \leq\binom{ p}{2}$ an edge coloring of K_{n} is said to be a (p, q)-edge coloring if for every induced subgraph on p vertices there are at least q colors used on its edges. Let $f(n, p, q)$ be the minimum number of colors needed in such an edge coloring. We will show that if $p \geq 6$ and $q=2\left\lceil\log _{2} p\right\rceil-4+\left\lceil\frac{4 p}{\left.2^{\left\lceil\log _{2} p\right\rceil}\right\rceil}\right\rceil$, then $f(n, p, q) \leq e^{O(\sqrt{\log n})}$. In particular the case for $p=7$ yields $f(n, 7,6) \leq e^{O(\sqrt{\log n})}$. (Received September 21, 2010)

