Joshua Hanes*, Department of Sciences and Mathematics, 1100 College St., MUW-100, Columbus, MS 39701, and Tristan Denley, 601 College St., Clarksville, TN 37044. Distance Labelings of Trees. Preliminary report.
Let V be a non-empty set, $\phi: V \rightarrow Z^{+}$be an injective function, and $D \subseteq Z^{+}$. The distance graph $G(\phi, D)$ is the graph with vertex set V and edge set defined $\operatorname{by}(u, v) \in E(G) \Longleftrightarrow|\phi(u)-\phi(v)| \in D$ for $u, v \in V$.

In [2] Ferrera, Kohayakawa and Rödl introduced this construction, and investigated a variety of parameters connected with representing graphs in this way. In particular they considered $D(G)=\min _{G(\phi, D) \cong G}|D|$. Whilst $D(G)$ is always at most $|E(G)|$ they showed that there are graphs on n vertices for which $D(G) \geq\binom{ n}{2}-n^{3 / 2}(\log n)^{1 / 2+o(1)}$.

We shall consider a variety of properties of this parameter. In particular we shall show that given $\Delta \geq 2$ and $n \geq 3$ for any tree on $n \geq 3$ vertices with maximum degree $\Delta, D(T) \leq \log _{\Delta-1} n+1$. Indeed we shall also show the existence of trees on n vertices with max degree Δ for which $D(T) \geq \frac{\log n \Delta-1}{\log _{\left(\log _{\Delta-1}\left(n^{2}\right)+1\right)}}$. (Received September 22, 2010)

