1067-05-2058 Sarah Spence Adams (Sarah.Adams@olin.edu), Olin Hall, Needham, MA 02492, Paul Booth* (Paul.Booth@students.olin.edu), Olin Hall, Needham, MA 02492, Harold Jaffe (Harold.Jaffe@students.olin.edu), Olin Hall, Needham, MA 02492, Denise Sakai Troxell (troxell@babson.edu), Babson Hall, Babson Park, MA 02457, and Steven Luke Zinnen (steven.zinnen@students.olin.edu), Olin Hall, Needham, MA 02492. On the λ-numbers of subclasses of generalized Petersen graphs.
An $\mathrm{L}(2,1)$-labeling of a graph G is an assignment f of nonnegative integers to the vertices of G such that if vertices x and y are adjacent, $|f(x)-f(y)| \geq 2$, and if x and y are at distance two, $|f(x)-f(y)| \geq 1$. These labelings have been used to model the channel assignment problem when sufficiently different frequencies must be assigned to transmitters operating in close proximity. The λ-number of G is the smallest number k for which G has an $\mathrm{L}(2,1)$-labeling using labels in the set $\{0,1, \ldots, k\}$. We determine the λ-numbers of certain generalized Petersen graphs (GPGs). A GPG of order n consists of two disjoint copies of the same cycle C_{n} together with a perfect matching between the two vertex sets. We designed an algorithm that reduced the computation time required to determine the λ-numbers of GPGs for previously intractable cases. More specifically, we provide exact λ-numbers of all GPGs of orders $9,10,11$, and 12 , bringing down to 6 the known upper bound of 7 for all but one graph. We also provide the λ-numbers of several infinite subclasses of GPGs that have useful representations on Möbius strips. (Received September 22, 2010)

